Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2505.09662

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Computation and Language

arXiv:2505.09662 (cs)
[Submitted on 14 May 2025 (v1), last revised 21 May 2025 (this version, v2)]

Title:Large Language Models Are More Persuasive Than Incentivized Human Persuaders

Authors:Philipp Schoenegger, Francesco Salvi, Jiacheng Liu, Xiaoli Nan, Ramit Debnath, Barbara Fasolo, Evelina Leivada, Gabriel Recchia, Fritz Günther, Ali Zarifhonarvar, Joe Kwon, Zahoor Ul Islam, Marco Dehnert, Daryl Y. H. Lee, Madeline G. Reinecke, David G. Kamper, Mert Kobaş, Adam Sandford, Jonas Kgomo, Luke Hewitt, Shreya Kapoor, Kerem Oktar, Eyup Engin Kucuk, Bo Feng, Cameron R. Jones, Izzy Gainsburg, Sebastian Olschewski, Nora Heinzelmann, Francisco Cruz, Ben M. Tappin, Tao Ma, Peter S. Park, Rayan Onyonka, Arthur Hjorth, Peter Slattery, Qingcheng Zeng, Lennart Finke, Igor Grossmann, Alessandro Salatiello, Ezra Karger
View a PDF of the paper titled Large Language Models Are More Persuasive Than Incentivized Human Persuaders, by Philipp Schoenegger and 38 other authors
View PDF
Abstract:We directly compare the persuasion capabilities of a frontier large language model (LLM; Claude Sonnet 3.5) against incentivized human persuaders in an interactive, real-time conversational quiz setting. In this preregistered, large-scale incentivized experiment, participants (quiz takers) completed an online quiz where persuaders (either humans or LLMs) attempted to persuade quiz takers toward correct or incorrect answers. We find that LLM persuaders achieved significantly higher compliance with their directional persuasion attempts than incentivized human persuaders, demonstrating superior persuasive capabilities in both truthful (toward correct answers) and deceptive (toward incorrect answers) contexts. We also find that LLM persuaders significantly increased quiz takers' accuracy, leading to higher earnings, when steering quiz takers toward correct answers, and significantly decreased their accuracy, leading to lower earnings, when steering them toward incorrect answers. Overall, our findings suggest that AI's persuasion capabilities already exceed those of humans that have real-money bonuses tied to performance. Our findings of increasingly capable AI persuaders thus underscore the urgency of emerging alignment and governance frameworks.
Subjects: Computation and Language (cs.CL)
ACM classes: I.2.7; H.1.2; K.4.1; H.5.2
Cite as: arXiv:2505.09662 [cs.CL]
  (or arXiv:2505.09662v2 [cs.CL] for this version)
  https://doi.org/10.48550/arXiv.2505.09662
arXiv-issued DOI via DataCite

Submission history

From: Philipp Schoenegger [view email]
[v1] Wed, 14 May 2025 14:31:33 UTC (1,041 KB)
[v2] Wed, 21 May 2025 13:29:57 UTC (1,014 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Large Language Models Are More Persuasive Than Incentivized Human Persuaders, by Philipp Schoenegger and 38 other authors
  • View PDF
  • Other Formats
license icon view license
Current browse context:
cs.CL
< prev   |   next >
new | recent | 2025-05
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
a export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack