
Jigsaw Puzzle Robot, Or:
HowWe Solved a Puzzle in 15 Months
Mark Rober – Nerd who makes YouTube videos you might have heard of
Ryan Oksenhorn – Co-founder @ Zipline who loves robots more than sleep
Ian Charnas – Chief Engineer at Mark Rober’s YouTube channel and karaoke
champ

After seeing others valiantly attempt (and struggle) to build a

puzzle-solving robot, we couldn’t stop asking ourselves: this can’t
actually be that hard, right?

https://www.youtube.com/channel/UCY1kMZp36IQSyNx_9h4mpCg
https://x.com/ryanzip
https://www.iancharnas.com
https://www.youtube.com/watch?v=Gu_1S77XkiM&t=992s
https://www.youtube.com/watch?v=WsPHBD5NsS0&t=142s


Bored on a long flight, Ryan decided to start writing a puzzle solving

algorithm. Fifteenmonths (andmany long nights) later, we have a robot

that reliably and autonomously solves pretty hard jigsaw puzzles. We

even crushed the Guinness record holder in a head-to-head race. Turns

out, it was really really hard.

If you haven’t seen the video of our results, check that out here.

If you’re curious about all the technical details and access to the source

code, read on.

Robot Overview

https://youtube.com/markrober


Jigsaw is a single-purpose robot that reliably and autonomously solves

and assembles “normal” jigsaw puzzles. Jigsaw’s biggest achievement

so far isfinishing a 1000-piece all-white puzzle with no human

intervention. The robot does this in three phases:

1. Taking photographs of all of the pieces

2. Computing a solution to the puzzle

3. Moving all of the pieces into place to form the assembled puzzle

The robot itself is constructed of a repurposed CNC router from

AvidCNC, together with a purpose-built vacuum gripper and a Google

Pixel smartphone used for the camera, which allows the robot to see the

shape and position of the puzzle pieces.





What makes this hard

Imagine solving a jigsaw puzzle. Specifically, imagine two pieces on the

table in front of you that you’re pretty sure should fit together.

Sometimes you need to wiggle and press those pieces to fit together.

And sometimes you get it wrong: turns out, those two pieces that look

like they really should fit together, don’t. That precision in seeing and
feeling is hard – and it’s what makes puzzles engaging. We initially

underestimated this level of accuracy, which is one of many challenges

that turned this project into “a hard but fun project” into “a hard,

years-long e�ort.”

To quantify this, the system accuracy required to snap two pieces

together is between 0.13 - 0.38mm. That’s the thickness of one to three

hairs. That means we need to photograph and understand the detailed

shape and position of every piece, thenmove those pieces up to 2

meters over to the area where the finished puzzle is being assembled,

then align with neighboring pieces and place them back down, all while

accruing an imperceptible amount of error.

Wemeasured this by commanding the robot to try to squash a piece

down into a neighboring piece that we held down, then nudging the

robot one thousandth of an inch (0.025mm) over, and repeating, until

the pieces no longer snapped together.



Ok, time to solve the puzzle!

Note: this isn’t just one algorithm: solving the puzzle is a chain of a

dozen di�erent algorithms so it’s easy to get lost in the details. Use the

Outline on the left to jump around!

Phase 1. Taking photos of all the pieces

To solve a puzzle, the robot needs to knowwhat the pieces look like and

where they are. We require humans to do one favor: lay all the pieces

out, face up, in the staging area, with no pieces touching each other. The

robot thenmoves in a tight cornrow pattern over the staging area,

taking photos of the pieces as it moves.



Taking pictures sounds like it might be the easy part, but as we fed those

initial photos into the puzzle solving algorithm, toomuch error in those

photos compounded to epic fails. We needed to go fromwhere we see a
piece (in pixel-space), to where a piece actually is (in robot-space), to
where the piece needs to end up (in our pixel-space solution, as shown

below), to the ultimate location in the solved puzzle (back in

robot-space). Garbage-in, garbage-out: minimizing errors at the top of

that chain (themapping between what the camera saw to where things

physically were) proved to be very important.



Nearly invisible error per piece compounds as we connect pieces. Here, we see
the output of how the robot planned on assembling this puzzle, before we

fixedmanymore sources of error.



After weeks of reducing error, we hadmade progress, but the results were still
not perfect. Sidenote: the upside-down pieces are ones that flipped and flung

themself like in the “tiddlywinks” game.

So what was causing the outlines of the pieces to appear slightly

mis-shaped, and the location of the pieces to be recorded slightly o�

from the true values? After a thorough investigation we foundmany

sources of error that needed to be accounted for. Some contributed as

little as 1 pixel of error and others as much as 10 pixels of error in

determining the shape and position of a puzzle piece:

- Robot↔Camera Misalignment, for example:

- The camera’s reference frame was not perfectly aligned with

the robot’s reference frame, meaning +Xmotion of the robot



led to pixel motion in the camera imagemostly in the X axis,

but with a tiny bit of undesired Y axis motion too

- The camera was not perfectly parallel with the table, so part

of the image was closer to the lens and appeared artificially

larger.

- All the pain that comes with using a smartphone as an industrial

camera:

- Lens distortion

- Aggressive noise reduction leading to artifacts

- Blooming where bright pixels bleed into neighboring pixels

- Pixels not being perfectly square

- Exposure changing when fewer pieces are visible in the

frame

- Focus changing when fewer pieces were visible in the frame

1.1 The Camera

Smartphone cameras and lenses are just about good enough to be used
for industrial computer vision cameras, if you want to spend weeks

calibrating, post-processing, and rigorously controlling your setup. We

chose a smartphone over an industrial camera sensor with a telecentric

lens because it told a better story. And we felt like making things harder

for ourselves.

We used a Google Pixel 8 Pro because it had a nice long lens (113 mm - 5x

telephoto), and Android provided simple remote shell automation.



To reduce variance between images, we lockedmost camera settings

(focus, shutter speed, white balance, and ISO) and disabled fancy noise

reduction.

We used the Android Debug Bridge (adb) interface to remotely control

the Pixel, including triggering the camera shutter and downloading

photos from the smartphone. For those interested, look into adb shell

input tap x y and adb pull.

1.2 Lighting

Changes in lighting throughout the day kept biting us: when we’d start

the day of testing, toomuch light led to bloom, where the bright white

pixels glowed with fuzzy borders. By themiddle of the night, less light

in our lab led to grainy photos with strong noise reduction. Inconsistent

lighting across a given photo led to computer vision failures. So we

blacked out the windows and installed an overhead Aputure Nova P600C



light (4700K, 100% brightness) with a softbox, 72 inches above the table

bed, which brought the illuminance on the puzzle pieces to 1400 Lux.

1.3 Camera Calibration and Distortion Correction

All camera lenses introduce some distortion into an imaging system.

The typical computer vision approach is to takemany photographs of a

calibration target containing known geometry, then run an

optimization process to calculate distortion parameter coe�cients,

which are finally used to undistort images taken with the imaging

system.

High-accuracy calibration target with 10-micron dimensional accuracy

We took 50 photos of this target at a variety of angles using the Google

Pixel 8 Pro before it wasmounted on the robot, and tried out three

camera calibrationmethods to see which would produce higher

accuracy. We ended up using Calib.IO’s software.



CalibrationMethod RMS RPE (lower is better)

OpenCV’s calibrateCamera 0.278 px

OpenCV’s calibrateCameraRO 0.161 px

Calib.IO’s Camera Calibrator 0.091 px

1.4 Perspective Correction

Solving a jigsaw puzzle is inherently a 2D problem, and the photos of the

puzzle pieces ideally should show perfect top-down orthographic

projection of each puzzle piece. However, photos of the camera

calibration target resting on the table, taken by the Google Pixel 8 Pro

mounted on the robot, showed a trapezoid instead of a rectangle,

meaning the camera wasn’t perfectly parallel with the table. We

corrected this using OpenCV’s getPerspectiveTransform and

warpPerspective functions.

1.5 Rotational Correction

Similarly, we noticed that the camera’s X axis was not perfectly parallel

with the robot’s X axis. Of course, this means their corresponding Y axes

were also out of parallel by the same amount. We needed tomeasure and

then correct for this error (the angle) between the camera and robot

reference frames.



To do this, we took a photo of the camera calibration target, thenmoved

the robot in the X axis only, and took a second photo of the target. We

then used OpenCV’s findChessboardCornersSB function to find the

chessboard corners (saddle points) in both images, and drew imaginary

line segments between corresponding features.



The angle between each line segment and the X axis was thenmeasured,

and the average angle was determined and recorded. Later, this angle

was used to correct for the rotation error and ensure that robotic

movements in the X axis resulted purely in X translations of the image.

1.6 Converting Between Camera and Robot Coordinate Systems

In order to be able to translate between where we see a piece (in

pixel-space), to where a piece actually is (in robot-space), we need to

know how to convert pixels (as seen by the camera) tomotor counts (the

fundamental unit of motion control in the robot).

Robot (red) and camera image (blue) coordinate systems



We calculated this by first taking an initial photo of the camera

calibration target, thenmoving the robot by a certain known distance

(inmotor counts) in both X and Y, and then taking a second photo. It

was then straightforward to calculate the relationship between the

distance the robot moved inmotor counts and the distance the pixels

moved in the image.

1.7 Approximating Telecentricity to Minimize Parallax

The primary goal of the camera system is to capture images of the

puzzle pieces that perfectly show the shape (outline) of each piece. The

problem is, conventional lenses su�er from parallax, where objects look

di�erent depending on how far they are from the center of the image.



If we were smarter, we would have solved this with a telecentric lens

that captures photos like the pegs on the left, but alas our smartphone

lens captures images like the pegs on the right. But we can approximate

telecentricity bymoving the camera further away, using the longest

available zoom lens, and even cropping the image tighter to the center

of the image. Look at the four pegs in the center of the right image:

those ones havemuch less parallax. The drawback is that we have to

takemanymore photos to be overtop each piece. Photo capture time

went from 10minutes to 90minutes.

1.8 Putting it all Together

After we’ve carefully placed all pieces face up in the staging area (and

made sure no pieces were accidentally touching), we start the robot.



All 1000 white puzzle pieces laid out on a table (painted withMusou black)

The robot moves in a serpentine path over the staging area, taking

pictures every few inches of movement to ensure that every puzzle

piece appears towards the center of at least one image.



After each photo is taken, corrections are applied: first camera

undistortion, then perspective correction, then rotation correction.



Left: Unedited photo of well-lit pieces on the black backdrop; Right: closeup

Each photo is saved along with the robot’s X and Y position where the

photo was taken. These images andmetadata are then fed into the

solver algorithm described in the next section.

Phase 2. Computing the solution



The overarching goal of Phase 2 is to take the photos of the staging area

puzzle and compute a list of robotic moves required to assemble the

puzzle. This involves a series of computer vision steps to understand the

shape of all puzzle pieces, then find the solution: how pieces fit

together.

2.1 Photo Segmentation

We crop photos to remove the excess photo overlap, then convert these

photos into binary bitmaps using a pixel brightness threshold that we

tuned for our lighting conditions: bright white pieces on amatte black

backdrop. We save these o� as BMP images.

Bitmap after cropping and segmentation

2.2 Extract Pieces

We use an optimized island-finding algorithm on the binary data to find

and extract each piece from each BMP.We throw out any islands that



touch the border of the image (because those pieces are partially

cropped, and we knowwe’ll have a better photo of that piece

elsewhere).

We then clean up the border of the piece to remove small debris like

dust and hairs by applying a simple convolution filter across each

successfully-extracted piece.

We end up with a bunch of BMPs that look like this:

Note: we will have some duplicate pieces, because wemay have fully

captured any given piece in a few photos. We’ll deal with that later.



2.3 Create a vectorized polygon of each piece

Wewant to be able to compare how two pieces fit together. This requires

us to understand the sides of pieces, and the shape that side has. Bitmap

files are just grids of pixels. This step finds the edge of the piece in the

binary (black and white) bitmap image, then walks along the edge,

creating a dense vector path: a list of coordinates. This polyline

represents the vector outline of the piece.

2.4 Find the 4 Corners of Each Piece

Jigsaw is designed to solve a grid-shaped puzzle. This means we can

assume each piece has four sides. To find those four sides, we “just”

need to find the corners, and the sides will be all the vertices between

those corners. Corner detection turned out to bemore di�cult than you

might imagine, but ultimately we were able to reliably detect the four



corners of the piece with an algorithm that finds the best four

candidates based on a handful of heuristics.

The heuristics compute a score for every point along the vector path,

scoring lower based on how sharp the point is and how far from the

center of the piece that sharp angle points. For example, themidangles

of the four actual corners point generally toward the center, where as

the other angular sections of a piece tend to point away:



For wacky shaped pieces, we’ll end up withmany candidates for our four

corners. So we then grade sets of 4 candidate corners based on how

cohesive they are together, for example: are they evenly spread radially

around the center? We spentmore hours than we’d like to admit

photographing di�erent puzzles and tuning these heuristics to reliably

find the correct four corners.

Because the corners of the pieces can become dented over time, the

corner location is further enhanced by finding where the two sides

would intersect, creating and saving a “virtual” or “idealized” corner

location.



Left: vectorized piece showing circled crosshairs where corners were detected;
Right: detail of the top-right corner showing the vertex that was chosen as the

best corner candidate (red circle) and the idealized corner (black circle).

2.5 Extract the Sides of Each Piece

Now that the corners are computed, it is a simplematter to extract the

four sides by recording all of the vertices between two consecutive

corners.



In this step, we also note which sides are edges along the border of the

puzzle by calculating how close to perfectly straight each side is.

2.6 Compute the Grip Point

Some pieces are really tiny and have cutouts near the center of the piece

(center of the bounding box). Our robot uses suction to pick up a piece,

so it needs a filled area that is 1/4” diameter. Instead of using the

geometric center, we compute the incenter of the polygon - themost

“inland” point that is furthest from any edge where the suction gripper

should pick up and rotate around.

The center (red) won’t work for gripping, but the incenter (green) is perfect

2.7 Deduplicate Pieces

We end up with some pieces photographed two ormore times. We

detect duplicates then intelligently choose the best to keep and discard



the rest. We do this by first computing where each piece exists on the

table (aka in robot space), using the position its photo was taken at plus

the pixel location of that piece converted into robot space using the ratio

we found in step 1.6. Two pieces centered within a fewmillimeters of

each other must be duplicates. The one we keep is the one closest to the

center of its original photo, to have the least parallax and distortion.

2.8 Compute Connectivity Graph

It’s now time to see which pieces could potentially fit together. In this

step we compare howwell all 4 sides of every piece “fit” with every

other side from every other piece. We compute a score, and keep the

best dozen or so candidates. In a 1000 piece puzzle, you’ll have 4000

sides, and dozens look nearly identical down to just a few pixels of

di�erence.

We quickly eliminatemany pairings by looking at the length of the 2

sides: if one is much longer than the other, they’re not amatch. Then

we domore expensivemath to essentially compute the error between

the two curves.



Pieces with similar corner distances that DO fit together

Pieces with similar corner distances that DO NOT fit together

Small improvements to this part of the algorithm have amassive impact

on the time that the solver (described in the next section) takes to find a

solution. If we find toomany possible matches for a given side, the

search space blows up and finding a solution quickly balloons from

seconds to days tomillenia (no exaggeration).

The way to think about this is as a connectivity graph:



For the orange piece, we found 3 possible sides that plug into its green

side. The weight of the edge is how perfect thematch is. Then each of

the four sides on each of those other pieces has a set of sides they
connect to, and those sides have their ownmatches, and so on. This

expands into amassive graph with 4000 nodes (4 sides per piece) in a

1000 piece puzzle. And the number of edges in the graph is at best the

one proper match per side, and at worst, up to a few dozen possible

matches that look really similar. Early tests of the robot found on

average 13 closematches per side, (over 50,000 total edges in the graph),

and the solver failed to finish after 24 hours of runtime, unsuccessfully

exploring over 100million paths through the graph. Our final system

found 6 closematches per side, but evenmore important had a

near-perfect hit rate for the edge with the highest weight: for all but 26

sides, the correct match was the first guess, and those remaining 26

were the second guess.



The computational complexity of the graph-search balloons so quickly

depending on how good the heuristic is that it’s really important that

our first guess for most pieces is the correct answer. This is why every

step leading up to this point is so crucial: tiny geometric distortions in

position and scale can lead us down the wrong path.

2.9 Solve the Puzzle

To solve the puzzle, all we have to do is find the right path through the

connectivity graph. But what does the right pathmean?

- We traverse the graph going through every single node exactly

once

- The traversal makes geometric sense with respect to the shape of a

piece

- We add virtual edges in the graph between sides on the same

piece, connected to a node at the “center” of the piece to

make sure you have to go through a piece, to bind the four

sides of a piece together.

- These “center” nodes can be traversedmore than once.

- We rely on the heuristic of a border to help us out in two ways:

- First we start with a corner piece and solve clockwise in

“spiral” order, walking the whole border then spiraling

inward.

- We also require that pieces placed along the border have an

edge side that butts up against the border.



- This allows us to find the correct path along the border quite

quickly: there are way fewer border pieces and their

orientation has to be constrained.

The first three pieces have been placed correctly.

If it doesn’t solve the entire puzzle and can’t place the next piece, it

un-spirals and starts looking at the second best fit before spiraling

forward again.

This process repeats until all 126 border pieces for this 1000 piece

all-white puzzle are placed, and keeps spiraling inward.





With all our refinements, a good graph traversal took as few as 1026

steps (1000 would be perfect - correct placement for each piece on the

first try). This step now runs in under 1 second.

2.10 Refine and “Relax” the Solution

The previous step aligns pieces in the solution to be pixel-perfect

overlaps. It turns out that the actual puzzle needs a little bit of breathing

room between pieces. Before we did anything to correct for this, the

robot was consistently placing pieces slightly on top of each other,

trying to solve the puzzle in an area about 2% too tight.

Wemeasured howwide the puzzle actually needed to be for pieces to

snap together to find the precise amount to relax and expand the

spacing.

Phase 3. Assembling the Puzzle

You’vemade it this far! Now all we have to do is move the pieces into

place. Can’t be that hard, right?

3.1 Where is the Gripper?

At this point we have the robot-space X,Y position of where we want to

pick up each piece. We have that because we know the robot-space

position where each photo was taken, and we can convert pixel locations

inside those photos intomotor counts using the



motor-counts-per-pixel relationship developed in step 1.6. It seems

like nothing is missing! Except of course, we don’t knowwhere the

gripper is.

I mean, of course we can see the gripper. It’s the red thing right here
that will manipulate the pieces:

However, we don’t yet have amathematical relationship between the

camera’s frame of reference and the gripper’s frame of reference.

To answer this, we need tomeasure the X,Y distance between the

camera’s coordinate system (with its origin at the top left of the photo)

and the center of the gripper.



In the world of robotics this is called eye-in-hand or hand-to-eye

calibration, and our idea to accomplish this was to take a picture of a

calibration target, then command the robot tomove the gripper roughly
over the center of the calibration target (as measured roughly by our

eyes), then the gripper would pick up and rotate the calibration target

and put it back down.We’d thenmove the camera back to the initial

position and take a second photo. So we have two photos, one where the

target has been rotated by the gripper.



Left: target in starting position; Right: target has been rotated by the gripper

If we can calculate the center of rotation where the target was picked up

and rotated, then we have calculated where the gripper is located with

respect to the camera’s frame of reference.

Calculating the center of rotation turns out to be rather straightforward.

Once again we use OpenCV’s findChessboardCornersSB to find the

corresponding corners in each image, and once again we draw a line

segment (shown in green) between those corresponding points.



However this time rather than just measuring the distance, we draw a

perpendicular line (shown in pink) in themiddle of that line segment. If

we do that for 2 sets of corresponding features and find the intersection

of the pink lines, we have found the center of rotation.

Tominimize error, wemake these line segments for not just 2

corresponding features, but from all of them.



Essentially “averaging”many sample points helps reduce calibration error.

This calibration was done with the aid of a python GUI written using

PyQT5. Actually, all of the robot’s operations were controlled with this

app, which helped avoid command-linemistakes late at night when we

were very, very tired.



Gripper calibration tab of Python QT5 GUI robot control application

3.2 Rotating and Placing Pieces

Youmay be wondering how the rotation works. That’s because we

haven’t yet looked at themechanism that picks up and rotates the

pieces. The gripper is composed of a vacuum pump, a solenoid to

connect and disconnect the vacuum pump, a vacuum line, a vacuum

swivel (to prevent the line from kinking), a hollowmotor that can rotate

the gripper, and a vacuum suction cup to pick up the pieces. The red

3D-printed part is there to hold the suction cup and to provide a flat

surface to push the pieces down and help them snap into place.



Vacuum-Swivel: Qosina 20022
HollowMotor: Overview OVU20012
Gripper: Custom 3D printed housing

Solenoid Valve: Festo R-R-FTO-KC-2018-1055
Vacuum Pump: Virtual Industries Tweezer-Vac

Suction Gripper: McMaster-Carr 3718A63



All of this is riding on a spring-suspension on a linear rail attached to

the gantry’s Z-Sled. This allows the gripper to slide up and down and

ensures it never pushes with toomuch force onto the table.

Left: gripper mechanism resting at bottom of linear rail;
Right: gripper lifted upward on linear rail



Not only that, but there is a linear encoder attached to the Z-Sled which

allows us tomeasure how far the gripper has slid along the linear rail.

This high accuracy encoder tells the robot whether the piece is fully

placed on the table (meaning the gripper is sitting lower on the linear

rail) or whether it’s stuck on top of another piece (meaning the gripper

is sitting higher on the linear rail).



Left: gripper mechanism resting lower on the linear encoder (green PCB)
Right: gripper lifted upward on linear encoder (green PCB)

Linear encoder is a Microchip LX34211 inductive position sensor.



3.3 First Attempts and theWiggle Routine

When we first tried to assemble the puzzle, almost none of the pieces fit

together perfectly. This was before we had corrected the errors in the

computer vision code as described earlier.

However even after we improved the computer vision code, some small

errors remained. Many pieces would fit together perfectly, and then you

would see one that was ever so slightly out of place, and that could ruin

the alignment for the rest of the puzzle if left unresolved.



To solve this, we took inspiration from humans. If you try to place a

puzzle piece with your hands, you’ll find that often you need to wiggle

the piece around to get it to snap into place. So we programmed the

robot to do the same thing.



This piece was initially not placed perfectly. The linear encoder detected it was
not fully set, and lightly wiggled the piece in both X and Y until it snapped into

place.

The only problemwas that wiggling the piece around would tend to shift

the entire puzzle around, messing up the next piece’s placement,

requiring evenmore wiggling. We added strips of wood (later painted

black) to the table to use as consistent registration stops. The wiggle

routine was thenmodified to push pieces towards these stops once they

were placed properly, and this ensured the puzzle pieces would end up

in consistent positions, nestled up against the registration strips.



Left: wooden registration strips taped to the table; Right: puzzle robot using
the registration strips to place pieces in consistent locations

3.4 Final Attempt

Finally, after more than a year of e�ort and headaches, excitement and

setbacks, close-but-not-perfect runs, the robot finally assembled the

1000 piece all-white puzzle without any human touches to the pieces.

Joy, frustration, exhaustion. An end-to-end solve of this 1000 piece

puzzle runs as fast as 5 hours.



We predicted the world’s foremost jigsaw puzzle solving champion would take
25-40 hours to assemble this 1000 piece all-white puzzle, but Jigsaw solved

and assembled the puzzle in under 6 hours! Unless you count the 15 months of
development time…

Source Code

Puzzle Solving Codebase in Python and C, by Ryan Oksenhorn

https://github.com/roksenhorn/puzzle-bot

Robot GUI including Calibration Routines in Python, by Ian Charnas

https://github.com/markroberyoutube/puzzle_bot

https://github.com/roksenhorn/puzzle-bot
https://github.com/markroberyoutube/puzzle_bot


Special Thanks

Clockwise from lower left: TammyMcLeod, Mark Rober, Ben Varvil, Alexander
Kernbaum, Ryan Oksenhorn, Umberto Scarfogliero, Ian Charnas

We couldn’t havemade this happen without significant contributions

from these fine folks:

● TammyMcLeod, for representing humanity in a race against the

robot

● Alexander Kernbaum, Umberto Scarfogliero, and Ben Varvil at

Robotic Systems



● Ahren Johnson and Cory K. at AvidCNC

● Erik Morrell, Aimee Frank, and Brendan Flosenzier at Teknic

● JakobWilm and Eythor Runar Eiriksson at Calib.io

https://www.avidcnc.com
https://teknic.com/
http://calib.io

